Leveraging Publication Metadata and Social Data into FolkRank for Scientific Publication Recommendation

Stephan Doerfel,¹ Robert Jäschke,² Andreas Hotho,³ Gerd Stumme¹

¹Knowledge and Data Engineering Group, University of Kassel

²L3S Research Center, Hannover

³Data Mining and Information Retrieval Group, University of Würzburg

RSWeb: 9th September 2012

Stephan Doerfel (University of Kassel)

Leveraging Publication Metadata

RSWeb 1 / 16

Publication Overload

- # papers doubles every 10 years
- # journals doubles every 15 years
- → information overload

typical approach: scientific article recommender e.g., in collaborative tagging systems

Datasets and Experiments

- Datasets
- Experiments

Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

Datasets and Experiments

- Datasets
- Experiments

Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

Folksonomy

A *folksonomy* is a quadruple $\mathbb{F} := (U, T, R, Y)$, where U, T, and R are finite sets, whose elements are called *users*, *tags* and *resources*, resp., and Y is a ternary relation between them, i.e., $Y \subseteq U \times T \times R$, whose elements are called *tag assignments*.

Folksonomy

A *folksonomy* is a quadruple $\mathbb{F} := (U, T, R, Y)$, where U, T, and R are finite sets, whose elements are called *users*, *tags* and *resources*, resp., and Y is a ternary relation between them, i.e., $Y \subseteq U \times T \times R$, whose elements are called *tag assignments*.

BibSonomy

< □ > < □ > < □ > < □ >

BibSonomy

Stephan Doerfel (University of Kassel)

RSWeb 4

4 / 16

FolkRank

FolkRank

 $\mathbb{F} = (U, T, R, Y) \rightarrow \text{undirected graph } G_{\mathbb{F}} = (U \cup T \cup R, E)$ $(u, t, r) \in Y \rightarrow \{u, t\}, \{u, r\}, \{t, r\} \in E$

Adapted PageRank (APR) \vec{w}^d : $\vec{w}^d_{i+1} \leftarrow dA^T \vec{w}^d_i + (1-d)\vec{p}$ FolkRank : $\vec{w}^d - \vec{w}^1$

A = the row-stochastic adjacency matrix of $G_{\mathbb{F}}$

 \vec{p} = preference vector

 $d \in [0,1]$ = parameter for the influence of \vec{p}

00

Adding new Dimensions to the Graph

- $\mathbb{F} + M := (\textit{U},\textit{T},\textit{R},\textit{M},\textit{Y}')$ extends the folksonomy \mathbb{F} where
 - Y' is a relation $Y' \subseteq U \times T \times R \times M$ and
 - each triple of Y is extended with those elements of M that one of the elements of the triple is associated with.

Modifications to the Preference Vector

Select certain users, resources or tags and assign them some weight in \vec{p} .

Datasets and Experiments

- Datasets
- Experiments

Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

2 Datasets and Experiments

- Datasets
- Experiments

Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

Publication posts of BibSonomy¹

 D_{08} challenge dataset from 2008

 D_{12} recent dataset from 2012

 D_R each publication in ≥ 2 posts

 D_{UR} each publications in \geq 2 posts, each user \geq 20 posts

dataset	users	publications
D _{12,R}	2,886	29,921
D _{12,UR}	541	25,072
D _{08,R}	729	13,001
D _{08,UR}	150	11,689

2 Datasets and Experiments

- Datasets
- Experiments

Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

RSWeb 8 / 16

RSWeb 8 / 16

Most Popular

- global ranking
- suggesting the most often bookmarked publications to a user

User-Based Collaborative Filtering

- users are represented as vectors in
 - the tag vector space $\rightarrow CF_T$
 - or the resource vector space $\rightarrow CF_R$
- using a similarity function, one determines a set of similar users and recommends publications that are popular among them

Experiment: Who has the publications to recommend?

How many similar users does it take, to find the 10 left-out resources? – The average coverage of the withheld resources in differently sized neighborhoods of similar users:

 \rightarrow Winner: Cosine similarity in the resource vector space

2 Datasets and Experiments

- Datasets
- Experiments

3 Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

MAP scores	D _{12,R}	D _{08,R}	D _{12,UR}	$D_{08,UR}$
$CF_R \ k = 10$	0.109	0.141	0.120	0.152
FolkRank	0.090	0.118	0.099	0.129
adapted PageRank (APR)	0.066	0.058	0.070	0.062
$CF_T k = 4$	0.062	0.081	0.060	0.088
most popular	0.006	0.013	0.007	0.013

$$\mathsf{CF}_R > \mathit{FolkRank} > \begin{cases} \mathit{APR} \\ \mathit{CF}_T \end{cases} > \mathsf{most popular}$$

2 Datasets and Experiments

- Datasets
- Experiments

3 Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

MAP scores	D _{12,R}	D _{08,R}	D _{12,UR}	D _{08,UR}
(plain) FolkRank	0.090	0.118	0.099	0.129
$\mathbb{F}+first$ authors	0.089	0.113	0.102	0.126
$\mathbb{F}+last$ authors	0.086	0.108	0.097	0.120
$\mathbb{F}+all \ authors$	0.085	0.103	0.096	0.115
$\mathbb{F} + group$	0.085	0.117	0.093	0.128

ъ

< A

MAP scores	D _{12,R}	D _{08,R}	<i>D</i> _{12,<i>UR</i>}	$D_{08,UR}$
(plain) FolkRank	0.090	0.118	0.099	0.129
\mathbb{F} + first authors	0.089	0.113	0.102	0.126
$\mathbb{F}+last$ authors	0.086	0.108	0.097	0.120
$\mathbb{F}+all authors$	0.085	0.103	0.096	0.115
$\mathbb{F} + group$	0.085	0.117	0.093	0.128

ъ

< A

MAP scores	D _{12,R}	D _{08,R}	$D_{12,UR}$	$D_{08,UR}$
(plain) FolkRank	0.090	0.118	0.099	0.129
\mathbb{F} + first authors	0.089	0.113	0.102	0.126
$\mathbb{F}+last$ authors	0.086	0.108	0.097	0.120
$\mathbb{F}+all authors$	0.085	0.103	0.096	0.115
$\mathbb{F} + group$	0.085	0.117	0.093	0.128

first authors > last authors > all authors

MAP scores	D _{12,R}	D _{08,R}	D _{12,UR}	$D_{08,UR}$
(plain) FolkRank	0.090	0.118	0.099	0.129
$\mathbb{F} + first authors$	0.089	0.113	0.102	0.126
$\mathbb{F}+last \ authors$	0.086	0.108	0.097	0.120
$\mathbb{F}+all authors$	0.085	0.103	0.096	0.115
$\mathbb{F} + group$	0.085	0.117	0.093	0.128

ъ

< A

MAP scores	D _{12,R}	D _{08,R}	D _{12,UR}	$D_{08,UR}$
(plain) FolkRank	0.090	0.118	0.099	0.129
\mathbb{F} + first authors	0.089	0.113	0.102	0.126
$\mathbb{F}+last authors$	0.086	0.108	0.097	0.120
$\mathbb{F}+all authors$	0.085	0.103	0.096	0.115
$\mathbb{F} + group$	0.085	0.117	0.093	0.128

comparable to plain FolkRank

MAP scores	D _{12,R}	D _{08,R}	D _{12,UR}	$D_{08,UR}$
(plain) FolkRank	0.090	0.118	0.099	0.129
$\mathbb{F} + first authors$	0.089	0.113	0.102	0.126
$\mathbb{F}+last \ authors$	0.086	0.108	0.097	0.120
$\mathbb{F}+all authors$	0.085	0.103	0.096	0.115
$\mathbb{F} + group$	0.085	0.117	0.093	0.128

 \mathbb{F} + posting year, publication year, tag clusters, venues, \ldots

2 Datasets and Experiments

- Datasets
- Experiments

3 Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

Exploiting Similar Users

Motivation: Good results of CF_R .

For user *u* select the *k* most similar users, insert their similarity value to *u* into \vec{p} .

All scenarios profit from the *inclusion of* at least very small *user neighborhoods*.

Exploiting Similar Users

Motivation: Good results of CF_R .

For user u select the k most similar users, insert their similarity value to u into \vec{p} .

- *Best results*: only the single most similar user gets additional preference
- APR profits even more from the inclusion of similar users, also for larger neighborhoods
- Using the *Euclidean distance decreases* MAP.

All scenarios profit from the *inclusion of* at least very small *user neighborhoods*.

Exploiting Recent Resources

Motivation: User's interests vary during the use of the system. For user *u* select the *k* most recently posted resources, assign the same weight to them in \vec{p} .

Comparable to the scores of CF_R .

Exploiting Recent Resources

Motivation: User's interests vary during the use of the system. For user *u* select the *k* most recently posted resources, assign the same weight to them in \vec{p} .

Comparable to the scores of CF_R .

- Significantly exceeds FolkRank (for ≥ 3 resources on all datasets).
- Highest MAP scores for different number of recent resources.
- Constant MAP for larger numbers of recent resources.

2 Datasets and Experiments

- Datasets
- Experiments

Recommendation Results

- Including New Dimensions
- Modifying the Preference Vector

- Cosine similarity is the measure of choice (CF_R or \vec{p} in FolkRank).
- Generally FolkRank below CF_R but better than CF_T .
- Using resources seems to be more beneficial than using tags.
- Authors or groups as additional dimension → scores comparable to plain FolkRank.
- Small user neighborhoods can improve FolkRank recommendations.
- Recency of a post is a valuable indicator for the current interests of a user (best FolkRank results).

- Repeat the more successful experiments on further datasets.
- Investigate whether certain types of users can benefit more from the inclusion of certain data than others.
- Truly capture a recommender's performance: Online-Evaluation in BibSonomy
- Use different versions of FolkRank as candidates for hybrid-recommenders.

16 / 16

RSWeb

http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/

- Repeat the more successful experiments on further datasets.
- Investigate whether certain types of users can benefit more from the inclusion of certain data than others.
- Truly capture a recommender's performance: Online-Evaluation in BibSonomy
- Use different versions of FolkRank as candidates for hybrid-recommenders. Try it yourself: WWW. bibsonomy.or

Thank you for your attention!

http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/